Application of Vector Product

矢量乘法的应用

Left hand and right hand rule 左手法则与右手法则

我们知道两个向量的叉乘会得到一个新的向量,该向量与两个向量所在平面垂直 $$first \times second = last$$ 但是到底垂直向上还是垂直向下,这个要做好约定,既通过左手法则或右手法则约定: image01

左手法则和右手法则的要点是,食指代表第一个向量的方向,中指代表第二个向量的方向,两个向量在同一个平面,但是不需要垂直,作为结果的第三个向量的方向由大拇指决定,此外:
1) 如果采用左手法则,食指到中指为顺时针旋转(从上向下观看)
2) 如果采用右手法则,食指到中指为逆时针旋转(从上向下观看)
本门课程沿用线性代数的传统,用右手法则定义叉乘后向量的方向,此外三维空间中的基向量$i$,$j$,$k$关系如下: image01 因此可以得到: $$i \times j = k,j \times k = i, k \times i = j$$ 同理 $$j \times i = -k,k \times j = -i, i \times k = -j$$ 同一个方向上的两个向量的叉乘结果是0 $$i \times i = 0,j \times j = 0, k \times k = 0$$ 所有对于任意三维向量的叉乘我们都有: $$A = A_1 i + A_2 j + A_3 k, B = B_1 i + B_2 j + B_3 k$$ $A \times B = (A_1 i + A_2 j + A_3 k) \times (B_1 i + B_2 j + B_3 k)$
$=A_1 B_1 i \times i + A_1 B_2 i \times j + A_1 B_3 i \times k$ $+A_2 B_1 j \times i + A_2 B_2 j \times j + A_2 B_3 j \times k$ $+A_3 B_1 k \times i + A_3 B_2 k \times j + A_3 B_3 k \times k$ $=A_1 B_2 k - A_1 B_3 j -A_2 B_1 k + A_2 B_3 i +A_3 B_1 j - A_3 B_2 i$

Vector product to calculate the area 通过向量积计算面积

In pure mathematics, you have already met the expression "$absin\theta$" in connection with areas. The triangle area$=\|\frac{1}{2} absin\theta\| = \|\frac{1}{2} a\times b\|$
在纯数学中,您已经遇到过与面积相关的表达式“$absin\theta$”。 三角形面积$=\|\frac{1}{2} absin\theta\| = \|\frac{1}{2} a\times b\|$ image01

The area of a parallelogram is 平行四边形的面积是 $$\|a\times b\|$$

image01

To find the areas of triangles or parallelograms using vector products, it is therefore necessary to first find two vectors representing adjacent edges, and the angle between them
要使用矢量积求三角形或平行四边形的面积,因此需要首先找到表示相邻边的两个矢量,以及它们之间的角度.

Example
Find the area of triangle ABC in 3 dimensional space, where A is (2, 0, 3), B is (1, −3, 4) and C is (−1, 2, 0)
计算3维空间中三角形ABC的面积,这里的A坐标是(2, 0, 3), B 坐标是 (1, −3, 4) C 坐标是 (−1, 2, 0)
image01 Solution image01

Exercise
There is parallelogram ABCD in 3 dimensional space, where A is (1, 1, 3), B is (2, 3, 3) and C is (3, 1, 3)
3维空间中有一个平行四边形ABCD,A坐标是(1, 1, 3), B 坐标是 (2, 3, 3) C 坐标是 (3, 1, 3) image01 1) Find the area of ABCD 计算ABCD的面积
2) Get the coordinate of D 找到D点的坐标

Triple products 三重乘积

For any two vectors b and c, $b\times c$ is itself a vector. A product can therefore be formed with any third vector, a say.
$a\cdot (b\times c)$ is a scalar quantity and is therefore called a scalar triple product.
$a\times (b\times c)$ is a vector quantity and is therefore called a vector triple product.
To find a triple product, you simply perform each product in turn.

对于任意两个向量 b 和 c,$b \times c$ 本身就是一个向量。 因此,可以再乘以任意第三个向量形成乘积,比如说: $a\cdot (b\times c)$ 最终结果是一个标量,因此被称为标量三重积。 $a\times (b\times c)$ 最终结果是一个向量,因此称为向量三重积。 要找到三重积,只需依次执行每个乘法运算。

Example:
(a) Find $(i + j)\cdot [(j+ k)\times (i + k)]$.
(b) Find $(i + j) \times [(j+ k) \times(i + k)]$.

Solution:
(a)
$[(j+ k)\times (i + k)]$
$=j \times i + j \times k + k \times i + k \times k$
$=-k+i+j$

$(i+j)\cdot (i+j-k)$
$=1i \cdot 1i +1j \cdot1 j +0k \cdot -k$
$=1 \times 1 +1 \times 1 + 0 \times -1=1+1=2$

(b)
$[(j+ k)\times (i + k)]=-k+i+j$

$(i+j) \times (i+j-k) = 1i \times 1i +1i \times 1j -1i \times 1k + 1j \times 1i +1j \times 1j -1j \times 1k$
$=1i \times 1j -1i \times 1k + 1j \times 1i-1j \times 1k$
$=k+j-k-i=-i+j$

About product sigh $\times$ and $\cdot$ 关于乘法运算符$\times$ 和 $\cdot$

One thing to remember is that when we use symbols $\times$(cross product), both sides must be vectors, but when using symbols $\cdot$(dot product) , two sides can be vectors, or a vector and a scalar (number)
需要记住一点,当我们使用符号$\times$的时候(叉积),两边必须都是向量,但是使用符号$\cdot$的时候(点积),两边可以都是向量,或者一个向量一个标量(数字)

As you will see in last exercise $(a \times b) \times c$ and $ a \times (b \times c)$ are not necessarily the same. It is therefore essential to use brackets in a vector triple product. However, this is not true for scalar triple products.
正如您将在上一个练习中看到的,$(a \times b) \times c$ 和 $ a \times (b \times c)$ 不一定相同。 因此,在向量三重积中使用括号是必不可少的。 但是,对于标量三重乘积而言,情况并非如此。

An expression such as $a \cdot b \times c$ could mean either $(a\cdot b) \times c$ or $a \cdot (b \times c)$. However, $a \cdot b$ is a scalar quantity and so the vector product $(a \cdot b) \times c$ is not possible. Brackets are therefore not usually shown in scalar triple products. So $a \cdot b \times c$ means only $a \cdot (b\times c)$
诸如 $a \cdot b \times c$ 的表达式可能意味着 $(a\cdot b) \times c$ 或 $a \cdot (b \times c)$。 然而,$a \cdot b$ 是一个标量,而向量积 $(a \cdot b) \times c$ 的计算是无法进行的。 因此,标量三重乘积中通常不显示括号。 所以 $a \cdot b \times c$ 只表示 $a \cdot (b\times c)$

$(a \cdot b) \cdot c$ is allowed, $(a \cdot b)$ equal a number or scalar, the "dot product" between a scalar and vector is called "number product", in another word, the vector dot product a scalar then result is vector, the new vector is original vector enlarged by the scalar
$(a \cdot b) \cdot c$ 是允许的, $(a \cdot b)$ 等于一个数字或标量,标量和向量之间的“点积”称为“数字积”,换句话说, 向量点积一个标量然后结果是向量,新向量是原始向量被标量放大

$(a \cdot b) \times c$ is not allowed, $(a \cdot b)$ equal a number or scalar, a scalar cross product to a vector is not defined
$(a \cdot b) \times c$ 是不允许的,$(a \cdot b)$ 等于一个数字或标量,不能再与一个向量进行叉积

Use of scalar triple products 三重乘积的应用

Calculation for parallelepiped 平行六面体的计算

A parallelepiped is a three dimensional shape with six faces, each of which is a parallelogram
平行六面体是具有六个面的三维形状,每个面都是平行四边形 image01

Consider the parallelepiped shown with adjacent edges $\overrightarrow{OA} =a$ , $\overrightarrow{OB} =b$ and $\overrightarrow{OC} =c$. Let $b \times c = |b \times c| \hat{n}$, where $\hat{n}$ is a unit vector perpendicular to plane $OBKC$, and suppose that the angle $\theta$ between $a$ and $\hat{n}$ is acute. Then, what is $a \cdot b \times c$?
考虑与相邻边 $\overrightarrow{OA} =a$ 、 $\overrightarrow{OB} =b$ 和 $\overrightarrow{OC} =c$ 决定的平行六面体。 让 $b \times c = |b \times c| \hat{n}$,其中$\hat{n}$ 是垂直于$OBKC$ 平面的单位向量,假设$a$ 和$\hat{n}$ 之间的夹角$\theta$ 是锐角。 那么$a \cdot b \times c$究竟代表什么?

1) $ a \cdot b \times c = a \cdot( b \times c) = a \cdot (|b \times c| \hat{n})$
here $|b \times c|$ is area of base, which is also a scalar
这里$|b \times c|$是立方体底部的面积,同时它也是一个标量

2) $a \cdot (|b \times c| \hat{n})=|b \times c| a \cdot \hat{n}$
calculate the dot product between $a$ and $\hat{n}$ first
首先计算 $a$和$\hat{n}$ 的点积

3) $|b \times c| a \cdot \hat{n}=|b \times c| |a| |\hat{n}|cos \theta= |b \times c| |a| cos \theta$
here $|a| cos \theta$ is the height of parallelepiped,therefore $a \cdot b \times c$ is the volume of parallelepiped
这里$|a| cos \theta$是平行六面体的高,因此$a \cdot b \times c$ 是他的体积

Sequence of vectors in scalar triple products 三重标量乘积中向量的次序

The volume of the parallelepiped shown above is therefore given by $a \cdot b \times c$. Similarly, it is also given by $b \cdot c \times a$ and $c \cdot a \times b$. All three of these scalar triple products must therefore be equal.
上面显示的平行六面体的体积由 $a \cdot b \times c$ 给出。 同样,它也由 $b \cdot c \times a$ 和 $c \cdot a \times b$ 给出。 因此,所有这三个标量三重乘积必须相等。 $$a \cdot b \times c = b \cdot c \times a = c \cdot a \times b$$ image01 You should note that these equal triple products all involve the same cyclic order of the three vectors, i.e.
您应该注意到,这些相等的三重乘积都涉及三个向量的相同循环顺序,即 $$...(a b c) a b c...$$ $$...a (b c a) b c...$$ $$...a b (c a b) c...$$

If this order is changed, then the sign of the scalar triple product is changed. For example,
如果这个顺序改变,那么标量三重乘积的符号就会改变。 例如, $$a \cdot c \times b = -a \cdot (b \times c) = −a \cdot b \times c$$

The volume of a parallelepiped is always positive and so a general formula is given by the modulus of a scalar triple product.
平行六面体的体积总是正的,所以一般公式由标量三重积的模数给出。

Challenge Question挑战题
(1) Is this equation hold? 以下方程是否成立
$x \times y \cdot z = y \times z \cdot x = z \times x \cdot y$.

(2) what is the relation between 他们的关系是什么?
$x \times y \cdot z$ and $x \cdot y \times z$

Hint: make
$$x = x_1 i + x_2 j + x_3 k$$
$$y = y_1 i + y_2 j + y_3 k$$
$$z = z_1 i + z_2 j + z_3 k$$

项目式学习1:平行四边形的面积与线性变换

根据前面内容我们可以得知,一个二维空间中的平行四边形的是由两个向量完全决定,它的体积也是两个向量的叉乘后得到的向量的模(大小)假如我们有如下平行四边形(蓝色),由其中四个顶点分别是$O=(0,0),A=(1,2),B=(2,0.5),D=(3,2.5)$ image01

项目式学习2:平行六面体的体积与线性变换

为了使问题简化,考虑一个最简单的平行六面体,既长宽高都是1的立方体 image01 它的三条楞刚好是单位基矢量$i$,$j$,$k$,如果用矩阵表示是 $i=\left[\begin{array}{c}1\\0\\0\end{array}\right]$, $j=\left[\begin{array}{c}0\\1\\0\end{array}\right]$,$k=\left[\begin{array}{c}0\\0\\1\end{array}\right]$
用矩阵$M = \left[\begin{array}{ccc} a_{1}&b_{1}&c_{1} \\ a_{2}&b_{2}&c_{2} \\ a_{3}&b_{3}&c_{3} \end{array}\right] $对原平行六面体的三个向量进行线性变化可以得到一组新的向量,并张开如图所示的平行六面体: